4. その他の制御フローツール

先ほど紹介した while 文の他にも、 Python は他の言語でおなじみの制御フロー文を備えていますが、これらには多少ひねりを加えてあります。

4.1. if

おそらく最もおなじみの文型は if 文でしょう。例えば:

>>> x = int(raw_input("Please enter an integer: "))
Please enter an integer: 42
>>> if x < 0:
...     x = 0
...     print 'Negative changed to zero'
... elif x == 0:
...     print 'Zero'
... elif x == 1:
...     print 'Single'
... else:
...     print 'More'
...
More

ゼロ個以上の elif 部を使うことができ、 else 部を付けることもできます。キーワード ‘elif‘ は ‘else if’ を短くしたもので、過剰なインデントを避けるのに役立ちます。一連の if ... elif ... elif ... は、他の言語における switch 文や case 文の代用となります。

4.2. for

Python の for 文は、読者が C 言語や Pascal 言語で使いなれているかもしれない for 文とは少し違います。 (Pascal のように) 常に算術型の数列にわたる反復を行ったり、 (C のように) 繰返しステップと停止条件を両方ともユーザが定義できるようにするのとは違い、Python の for 文は、任意のシーケンス型 (リストまたは文字列) にわたって反復を行います。反復の順番はシーケンス中に要素が現れる順番です。例えば:

>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print w, len(w)
...
cat 3
window 6
defenestrate 12

ループ内部でイテレートしているシーケンスを修正する必要があれば (例えば選択されたアイテムを複製するために)、最初にコピーを作ることをお勧めします。シーケンスに対するイテレーションは暗黙にコピーを作りません。スライス記法はこれを特に便利にします:

>>> for w in words[:]:  # Loop over a slice copy of the entire list.
...     if len(w) > 6:
...         words.insert(0, w)
...
>>> words
['defenestrate', 'cat', 'window', 'defenestrate']

4.3. range() 関数

数列にわたって反復を行う必要がある場合、組み込み関数 range() が便利です。この関数は算術型の数列を生成します:

>>> range(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

指定した終端値は生成されるシーケンスには入りません。 range(10) は 10 個の値を生成し、長さ 10 のシーケンスにおける各項目のインデクスとなります。 range を別の数から開始したり、他の増加量 (負の増加量でさえも; 増加量は時に ‘ステップ(step)’ と呼ばれることもあります) を指定することもできます:

>>> range(5, 10)
[5, 6, 7, 8, 9]
>>> range(0, 10, 3)
[0, 3, 6, 9]
>>> range(-10, -100, -30)
[-10, -40, -70]

あるシーケンスにわたってインデクスで反復を行うには、 range()len() を次のように組み合わせられます:

>>> a = ['Mary', 'had', 'a', 'little', 'lamb']
>>> for i in range(len(a)):
...     print i, a[i]
...
0 Mary
1 had
2 a
3 little
4 lamb

しかし、多くの場合は enumerate() 関数を使う方が便利です。 ループのテクニック を参照してください。

4.4. break 文と continue 文とループの else

break 文は、C 言語と同じく、最も内側の for または while ループを中断します。

ループ文は else 節を持つことができます。これは、 (for で) 反復処理対象のリストを使い切ってループが終了したとき、または (while で) 条件が偽になったときに実行されますが、 break 文でループが終了したときは実行されません。この動作を、素数を探す下記のループを例にとって示します:

>>> for n in range(2, 10):
...     for x in range(2, n):
...         if n % x == 0:
...             print n, 'equals', x, '*', n/x
...             break
...     else:
...         # loop fell through without finding a factor
...         print n, 'is a prime number'
...
2 is a prime number
3 is a prime number
4 equals 2 * 2
5 is a prime number
6 equals 2 * 3
7 is a prime number
8 equals 2 * 4
9 equals 3 * 3

(そう、これは正しいコードです。よく見てください: else 節は ifではなくfor ループに属しています。)

ループの else 句は、 if 文の else よりも try 文の else に似ています。 try 文の else 句は例外が発生しなかった時に実行され、ループの else 句は break されなかった場合に実行されます。 try 文と例外についての詳細は 例外を処理する を参照してください。

continue 文も C 言語から借りてきたもので、ループの次のイテレーションを実行します:

>>> for num in range(2, 10):
...     if num % 2 == 0:
...         print "Found an even number", num
...         continue
...     print "Found a number", num
Found an even number 2
Found a number 3
Found an even number 4
Found a number 5
Found an even number 6
Found a number 7
Found an even number 8
Found a number 9

4.5. pass

pass 文は何もしません。 pass は、文を書くことが構文上要求されているが、プログラム上何の動作もする必要がない時に使われます:

>>> while True:
...     pass  # Busy-wait for keyboard interrupt (Ctrl+C)
...

これは最小のクラスを作るときによく使われる方法です:

>>> class MyEmptyClass:
...     pass
...

pass が使われるもう1つの場所は、新しいコードを書いている時の関数や条件文の中身です。こうすることで、具体的なコードを書かないで抽象的なレベルで考えることができます。 pass は何もすることなく無視されます:

>>> def initlog(*args):
...     pass   # Remember to implement this!
...

4.6. 関数を定義する

フィボナッチ数列 (Fibonacci series) を任意の上限値まで書き出すような関数を作成できます:

>>> def fib(n):    # write Fibonacci series up to n
...     """Print a Fibonacci series up to n."""
...     a, b = 0, 1
...     while a < n:
...         print a,
...         a, b = b, a+b
...
>>> # Now call the function we just defined:
... fib(2000)
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597

def は関数の 定義 (definition) を導くキーワードです。 def の後には、関数名と仮引数を丸括弧で囲んだリストを続けなければなりません。関数の実体を構成する実行文は次の行から始め、インデントされていなければなりません。

関数の本体の記述する文の最初の行は文字列リテラルにすることもできます。その場合、この文字列は関数のドキュメンテーション文字列 (documentation string)、または docstring と呼ばれます。 (docstring については ドキュメンテーション文字列 でさらに扱っています。) ドキュメンテーション文字列を使ったツールには、オンライン文書や印刷文書を自動的に生成したり、ユーザが対話的にコードから直接閲覧できるようにするものがあります。自分が書くコードにドキュメンテーション文字列を入れるのはよい習慣です。書く癖をつけてください。

関数を 実行 (execution) するとき、関数のローカル変数のために使われる新たなシンボルテーブル (symbol table) が用意されます。もっと正確にいうと、関数内で変数への代入を行うと、その値はすべてこのローカルなシンボルテーブルに記憶されます。一方、変数の参照を行うと、まずローカルなシンボルテーブルが検索され、次にさらに外側の関数のローカルなシンボルテーブルを検索し、その後グローバルなシンボルテーブルを調べ、最後に組み込みの名前テーブルを調べます。従って、関数の中では、グローバルな変数を参照することはできますが、直接値を代入することは (global 文で名前を挙げておかない限り)できません。

関数を呼び出す際の実際のパラメタ (引数) は、関数が呼び出されるときに関数のローカルなシンボルテーブル内に取り込まれます。そうすることで、引数は 値渡し (call by value) で関数に渡されることになります (ここでの 値 (value) とは常にオブジェクトへの 参照(reference) をいい、オブジェクトの値そのものではありません) [1]。ある関数がほかの関数を呼び出すときには、新たな呼び出しのためにローカルなシンボルテーブルが新たに作成されます。

関数の定義を行うと、関数名は現在のシンボルテーブル内に取り入れられます。関数名の値は、インタプリタからはユーザ定義関数 (user-defined function) として認識される型を持ちます。この値は別の名前に代入して、後にその名前を関数として使うこともできます。これは一般的な名前変更のメカニズムとして働きます:

>>> fib
<function fib at 10042ed0>
>>> f = fib
>>> f(100)
0 1 1 2 3 5 8 13 21 34 55 89

他の言語出身の人からは、 fib は値を返さないので関数ではなく手続き (procedure) だと異論があるかもしれませんね。技術的に言えば、実際には return 文を持たない関数もややつまらない値ですが値を返しています。この値は None と呼ばれます (これは組み込みの名前です)。 None だけを書き出そうとすると、インタプリタは通常出力を抑制します。本当に出力したいのなら、以下のように print を使うと見ることができます:

>>> fib(0)
>>> print fib(0)
None

フィボナッチ数列の数からなるリストを出力する代わりに、値を返すような関数を書くのは簡単です:

>>> def fib2(n): # return Fibonacci series up to n
...     """Return a list containing the Fibonacci series up to n."""
...     result = []
...     a, b = 0, 1
...     while a < n:
...         result.append(a)    # see below
...         a, b = b, a+b
...     return result
...
>>> f100 = fib2(100)    # call it
>>> f100                # write the result
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

この例は Python の新しい機能を示しています:

  • return 文では、関数から一つ値を返します。 return の引数となる式がない場合、 None が返ります。関数が終了したときにも None が返ります。

  • result.append(a) では、リストオブジェクト resultメソッド (method) を呼び出しています。メソッドとは、オブジェクトに ‘属している’ 関数のことで、 obj を何らかのオブジェクト (式であっても構いません)、 methodname をそのオブジェクトで定義されているメソッド名とすると、 obj.methodname と書き表されます。異なる型は異なるメソッドを定義しています。異なる型のメソッドで同じ名前のメソッドを持つことができ、あいまいさを生じることはありません。 (クラス (class) を使うことで、自前のオブジェクト型とメソッドを定義することもできます。 クラス 参照) 例で示されているメソッド append() は、リストオブジェクトで定義されています; このメソッドはリストの末尾に新たな要素を追加します。この例での append()result = result + [a] と等価ですが、より効率的です。

4.7. 関数定義についてもう少し

可変個の引数を伴う関数を定義することもできます。引数の定義方法には 3 つの形式があり、それらを組み合わせることができます。

4.7.1. デフォルトの引数値

もっとも便利なのは、一つ以上の引数に対してデフォルトの値を指定する形式です。この形式を使うと、定義されている引数より少ない個数の引数で呼び出せる関数を作成します:

def ask_ok(prompt, retries=4, complaint='Yes or no, please!'):
    while True:
        ok = raw_input(prompt)
        if ok in ('y', 'ye', 'yes'):
            return True
        if ok in ('n', 'no', 'nop', 'nope'):
            return False
        retries = retries - 1
        if retries < 0:
            raise IOError('refusenik user')
        print complaint

この関数はいくつかの方法で呼び出せます:

  • 必須の引数のみ与える: ask_ok('Do you really want to quit?')

  • 一つのオプション引数を与える: ask_ok('OK to overwrite the file?', 2)

  • 全ての引数を与える: ask_ok('OK to overwrite the file?', 2, 'Come on, only yes or no!')

この例では in キーワードが導入されています。このキーワードはシーケンスが特定の値を含んでいるかどうか調べるのに使われます。

デフォルト値は、関数が定義された時点で、関数を 定義している 側のスコープ (scope) で評価されるので

i = 5

def f(arg=i):
    print arg

i = 6
f()

5 を出力します。

重要な警告: デフォルト値は 1 度だけしか評価されません。デフォルト値がリストや辞書のような変更可能なオブジェクトの時にはその影響がでます。例えば以下の関数は、後に続く関数呼び出しで関数に渡されている引数を累積します:

def f(a, L=[]):
    L.append(a)
    return L

print f(1)
print f(2)
print f(3)

このコードは、以下を出力します

[1]
[1, 2]
[1, 2, 3]

後続の関数呼び出しでデフォルト値を共有したくなければ、代わりに以下のように関数を書くことができます:

def f(a, L=None):
    if L is None:
        L = []
    L.append(a)
    return L

4.7.2. キーワード引数

関数を kwarg=value という形式の キーワード引数 を使って呼び出すこともできます。例えば、以下の関数:

def parrot(voltage, state='a stiff', action='voom', type='Norwegian Blue'):
    print "-- This parrot wouldn't", action,
    print "if you put", voltage, "volts through it."
    print "-- Lovely plumage, the", type
    print "-- It's", state, "!"

は、必須引数 (voltage) とオプション引数 (stateactiontype) を受け付けます。この関数は以下のいずれかの方法で呼び出せます:

parrot(1000)                                          # 1 positional argument
parrot(voltage=1000)                                  # 1 keyword argument
parrot(voltage=1000000, action='VOOOOOM')             # 2 keyword arguments
parrot(action='VOOOOOM', voltage=1000000)             # 2 keyword arguments
parrot('a million', 'bereft of life', 'jump')         # 3 positional arguments
parrot('a thousand', state='pushing up the daisies')  # 1 positional, 1 keyword

が、以下の呼び出しは不適切です:

parrot()                     # required argument missing
parrot(voltage=5.0, 'dead')  # non-keyword argument after a keyword argument
parrot(110, voltage=220)     # duplicate value for the same argument
parrot(actor='John Cleese')  # unknown keyword argument

関数の呼び出しにおいて、キーワード引数は位置指定引数の後でなければなりません。渡されるキーワード引数は全て、関数で受け付けられる引数のいずれかに対応していなければならず (例えば、actor はこの parrot 関数の引数として適切ではありません)、順序は重要ではありません。これはオプションでない引数でも同様です (例えば、parrot(voltage=1000) も適切です)。いかなる引数も値を複数回は受け取れません。この制限により失敗する例は:

>>> def function(a):
...     pass
...
>>> function(0, a=0)
Traceback (most recent call last):
  File "<stdin>", line 1, in ?
TypeError: function() got multiple values for keyword argument 'a'

仮引数の最後に **name の形式のものがあると、それまでの仮引数に対応したものを除くすべてのキーワード引数が入った辞書 (マッピング型 — dict を参照) を受け取ります。 **name*name の形式をとる、仮引数のリストを超えた位置指定引数の入ったタプルを受け取る引数 (次の節で述べます) と組み合わせることができます。 (*name**name より前になければなりません)。例えば、ある関数の定義を以下のようにすると:

def cheeseshop(kind, *arguments, **keywords):
    print "-- Do you have any", kind, "?"
    print "-- I'm sorry, we're all out of", kind
    for arg in arguments:
        print arg
    print "-" * 40
    keys = sorted(keywords.keys())
    for kw in keys:
        print kw, ":", keywords[kw]

呼び出しは以下のようになり:

cheeseshop("Limburger", "It's very runny, sir.",
           "It's really very, VERY runny, sir.",
           shopkeeper='Michael Palin',
           client="John Cleese",
           sketch="Cheese Shop Sketch")

もちろん以下のように出力されます:

-- Do you have any Limburger ?
-- I'm sorry, we're all out of Limburger
It's very runny, sir.
It's really very, VERY runny, sir.
----------------------------------------
client : John Cleese
shopkeeper : Michael Palin
sketch : Cheese Shop Sketch

キーワード引数名のリストを、キーワード辞書の keys() メソッドの結果をソートして作成していることに注目してください。sort() が呼び出されていないと、引数が出力される順番は不確定となります。

4.7.3. 任意引数リスト

最後に、最も使うことの少ない選択肢として、関数が任意の個数の引数で呼び出せるよう指定する方法があります。これらの引数はタプル (タプルとシーケンス を参照) に格納されます。可変個の引数の前に、ゼロ個かそれ以上の引数があっても構いません。

def write_multiple_items(file, separator, *args):
    file.write(separator.join(args))

4.7.4. 引数リストのアンパック

引数がすでにリストやタプルになっていて、個別な固定引数を要求する関数呼び出しに渡すためにアンパックする必要がある場合には、逆の状況が起こります。例えば、組み込み関数 range() は引数 startstop を別に与える必要があります。個別に引数を与えることができない場合、関数呼び出しを * 演算子を使って書き、リストやタプルから引数をアンパックします:

>>> range(3, 6)             # normal call with separate arguments
[3, 4, 5]
>>> args = [3, 6]
>>> range(*args)            # call with arguments unpacked from a list
[3, 4, 5]

同じやりかたで、** オペレータを使って辞書でもキーワード引数を渡すことができます:

>>> def parrot(voltage, state='a stiff', action='voom'):
...     print "-- This parrot wouldn't", action,
...     print "if you put", voltage, "volts through it.",
...     print "E's", state, "!"
...
>>> d = {"voltage": "four million", "state": "bleedin' demised", "action": "VOOM"}
>>> parrot(**d)
-- This parrot wouldn't VOOM if you put four million volts through it. E's bleedin' demised !

4.7.5. ラムダ式

キーワード lambda を使うと、名前のない小さな関数を生成できます。例えば lambda a, b: a+b は、二つの引数の和を返す関数です。ラムダ式の関数は、関数オブジェクトが要求されている場所にならどこでも使うことができます。ラムダ式は、構文上単一の式に制限されています。意味付け的には、ラムダ形式は単に通常の関数定義に構文的な糖衣をかぶせたものに過ぎません。入れ子構造になった関数定義と同様、ラムダ式もそれを取り囲むスコープから変数を参照することができます:

>>> def make_incrementor(n):
...     return lambda x: x + n
...
>>> f = make_incrementor(42)
>>> f(0)
42
>>> f(1)
43

上記の例は、関数を返すところでラムダ式を使っています。もう1つの例では、ちょっとした関数を引数として渡すのに使っています:

>>> pairs = [(1, 'one'), (2, 'two'), (3, 'three'), (4, 'four')]
>>> pairs.sort(key=lambda pair: pair[1])
>>> pairs
[(4, 'four'), (1, 'one'), (3, 'three'), (2, 'two')]

4.7.6. ドキュメンテーション文字列

ドキュメンテーション文字列については、その内容と書式に関する慣習をいくつか挙げます。

最初の行は、常に対象物の目的を短く簡潔にまとめたものでなくてはなりません。簡潔に書くために、対象物の名前や型を明示する必要はありません。名前や型は他の方法でも得られるからです (名前がたまたま関数の演算内容を記述する動詞である場合は例外です)。最初の行は大文字で始まり、ピリオドで終わっていなければなりません。

ドキュメンテーション文字列中にさらに記述すべき行がある場合、二行目は空行にし、まとめの行と残りの記述部分を視覚的に分離します。つづく行は一つまたはそれ以上の段落で、対象物の呼び出し規約や副作用について記述します。

Python のパーザは複数行にわたる Python 文字列リテラルからインデントを剥ぎ取らないので、ドキュメントを処理するツールでは必要に応じてインデントを剥ぎ取らなければなりません。この処理は以下の規約に従って行います。最初の行の 後にある 空行でない最初の行が、ドキュメント全体のインデントの量を決めます。(最初の行は通常、文字列を開始するクオートに隣り合っているので、インデントが文字列リテラル中に現れないためです。) このインデント量と “等価な” 空白が、文字列のすべての行頭から剥ぎ取られます。インデントの量が少ない行を書いてはならないのですが、もしそういう行があると、先頭の空白すべてが剥ぎ取られます。インデントの空白の大きさが等しいかどうかは、タブ文字を (通常は 8 文字のスペースとして) 展開した後に調べられます。

以下に複数行のドキュメンテーション文字列の例を示します:

>>> def my_function():
...     """Do nothing, but document it.
...
...     No, really, it doesn't do anything.
...     """
...     pass
...
>>> print my_function.__doc__
Do nothing, but document it.

    No, really, it doesn't do anything.

4.8. 間奏曲: コーディングスタイル

これからより長くより複雑な Python のコードを書いていくので、そろそろ コーディングスタイル について語っても良い頃です。ほとんどの言語は様々なスタイルで書け (もっと簡潔に言えば フォーマットでき)、スタイルによって読み易さが異なります。他人にとって読み易いコードにしようとするのはどんなときでも良い考えであり、良いコーディングスタイルを採用することが非常に強力な助けになります。

Python には、ほとんどのプロジェクトが守っているスタイルガイドとして PEP 8 があります。それは非常に読み易く目に優しいコーディングスタイルを推奨しています。全ての Python 開発者はある時点でそれを読むべきです。ここに最も重要な点を抜き出しておきます:

  • インデントには空白 4 つを使い、タブは使わないこと。

    空白 4 つは (深くネストできる) 小さいインデントと (読み易い) 大きいインデントのちょうど中間に当たります。タブは混乱させるので、使わずにおくのが良いです。

  • ソースコードの幅が 79 文字を越えないように行を折り返すこと。

    こうすることで小さいディスプレイを使っているユーザも読み易くなり、大きなディスプレイではソースコードファイルを並べることもできるようになります。

  • 関数やクラスや関数内の大きめのコードブロックの区切りに空行を使いなさい。

  • 可能なら、コメントは行に独立で書きなさい

  • docstring を使いなさい。

  • 演算子の前後とコンマの後には空白を入れ、括弧類のすぐ内側には空白を入れないこと: a = f(1, 2) + g(3, 4)

  • クラスや関数に一貫性のある名前を付けなさい。慣習では CamelCase をクラス名に使い、 lower_case_with_underscores を関数名やメソッド名に使います。常に self をメソッドの第 1 引数の名前 (クラスやメソッドについては クラス初見 を見よ) として使いなさい。

  • あなたのコードを世界中で使ってもらうつもりなら、風変りなエンコーディングは使わないこと。どんな場合でも、プレーン ASCII が最も上手くいきます。

注記

[1]

実際には、オブジェクトへの参照渡し (call by object reference) と書けばよいのかもしれません。というのは、変更可能なオブジェクトが渡されると、関数の呼び出し側は、呼び出された側の関数がオブジェクトに (リストに値が挿入されるといった) 何らかの変更に出くわすことになるからです。